Понятие реактивного сопротивления
Данная разновидность репрезентирует взаимоотношение электротока и напряжения на определенных типах подключенных в сеть нагрузок (дросселях, конденсаторных компонентах), не сопряженное с объемами электроэнергии, используемыми потребителем. Измерительной единицей, как и для других разновидностей, выступает ом. Рассматриваемое явление обнаруживает себя только при переменном электротоке. В расчетах оно обозначается латинской литерой Х.
Активное и реактивное сопротивление
При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.
В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.
В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.
С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.
Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.
В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.
После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.
Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.
Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.
Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.
Активное сопротивление
В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, пропорционально активному сопротивлению.
При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.
Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:
R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.
На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.
Какое сопротивление называется реактивным, какое активным
Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.
Типы рассматриваемой величины и формулы ее расчета
Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.
Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сети
Различия между активным и реактивным сопротивлением
Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию. В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.
От чего зависит сопротивление проводника
Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.
Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг. При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.
Активное сопротивление в цепи переменного тока
Определим величину тока в цепи переменного тока с чисто активным сопротивлением.
Схема с чисто активной нагрузкой.
Для переменного тока закон, по которому меняется мгновенное значение напряжения, имеет следующий вид:
$$U=U_m sin(omega t+varphi)$$
Мгновенное значение тока через любой элемент находится по закону Ома:
Подставляя предыдущую формулу в закон Ома, получим:
Из этой формулы видно, что колебания силы тока в цепи с чисто активным сопротивлением имеют ту же частоту и фазу, что и колебания напряжения. Ток в цепи в любой момент времени возрастает пропорционально напряжению. Амплитуда активного сопротивления постоянна. А значит, действующие значения переменного напряжения и тока также можно находить по закону Ома.
Это важная особенность активного сопротивления. Оно не обладает инерционностью, ток и напряжение через него изменяются синфазно. Вся энергия движущихся по активному сопротивлению зарядов сразу преобразуется в тепловую (и, возможно, механическую).
Отсюда следует, что энергия, выделяемая на активном сопротивлении в цепи переменного тока, находится непосредственно из закона Джоуля-Ленца с использованием действующих значений:
$$А = I^2Rt$$
Указанные соотношения справедливы только для чисто активных сопротивлений. Для сопротивлений, которые имеют реактивную составляющую, к примеру, для катушки индуктивности, зависимость мгновенного значения тока сложнее, и закон Джоуля-Ленца в таком виде использовать нельзя.
Любой реальный проводник обладает некоторой индуктивностью, а между любыми частями реальных проводников и элементов существует некоторая электроемкость. Поэтому чисто активных сопротивлений, строго говоря, не существует. Любое реальное активное сопротивление имеет некоторую реактивную составляющую. На низких частотах она очень мала, и ею пренебрегают. На высоких же частотах ею пренебречь нельзя, и она всегда оказывает заметное влияние на поведение и параметры цепи.
Индуктивное реактивное сопротивление
Оно встречается в цепях, где есть своего рода электромагниты, влияющие на магнитное поле электрической цепи. Еще их называют катушками индуктивности. Катушки индуктивности имеют низкое полное электрическое сопротивление на низких частотах и высокое полное электрическое сопротивление на высоких частотах.
Разные катушки индуктивности. Обратите внимание на общность
конструкции – медный провод намотан на магнит, образуя катушку.
Как рассчитать емкостное реактивное сопротивление
Рассмотрим пример расчета емкостного реактивного сопротивления: предположим, что конденсатор 6 мкФ подключен к розетке переменного тока с напряжением 40 В и частотой F 60 Гц.
Для определения емкостного реактивного сопротивления используется определение, данное в начале. Угловая частота ω определяется как:
ω = 2πf = 2π x 60 Гц = 377 с-1
Затем этот результат подставляется в определение:
ИксC = 1 / ωC = 1 / (377 с-1х 6 х10 -6 F) = 442,1 Ом
Теперь посмотрим на амплитуду тока, циркулирующего в цепи. Поскольку источник предлагает напряжение амплитудой VC = 40 В, мы используем соотношение между емкостным реактивным сопротивлением, током и напряжением для вычисления амплитуды тока или максимального тока:
яC = VC / ИКСC = 40 В / 442,1 Ом = 0,09047 А = 90,5 м А.
Если частота становится очень большой, емкостное реактивное сопротивление становится небольшим, но если частота становится равной 0 и у нас есть постоянный ток, реактивное сопротивление стремится к бесконечности.
Приложения с емкостным реактивным сопротивлением
Фильтры верхних частот, фильтры нижних частот, мостовые схемы для измерения емкости и индуктивности и схемы фазового сдвига являются одними из основных применений схем, которые содержат емкостные реактивные сопротивления в сочетании с индуктивностями и электрическими сопротивлениями.
В стереосистемах некоторые динамики поставляются с отдельными динамиками. вуфер (больше) для низких частот и твитер или небольшой рог для высоких частот. Это улучшает производительность и качество звука.
В них используются конденсаторы, которые предотвращают попадание низких частот в высокочастотный динамик, а в низкочастотном динамике добавлен индуктор, чтобы избежать высокочастотных сигналов, поскольку индуктивность имеет реактивное сопротивление, пропорциональное частоте: XL = 2πfL.
Активное сопротивление проводов, кабелей и линий
Из-за того что переменный ток проходит неравномерно, то при одинаковых условиях тока переменного и постоянного R будет отличаться. Как уже было сказано, стальные электропровода имеют лучшее активное R по сравнению с проводниками из цветных металлов, которые имеют одинаковое R при любой силе тока.
Напротив, активное R электрокабелей из стали всегда зависит от электрического тока, поэтому удельную постоянную проводимость в этом случае никогда не используют. Активное R электрокабеля определяют с помощью формулы: R=l/у*s.
Определение активного сопротивления проводов
Активное сопротивлении проводов проще всего определять по справочным данным, составленным на основании ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. Данные таблицы вы сможете найти непосредственно в самом ГОСТ, приведу лишь не которые.
- γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
- s – номинальное сечение провода(кабеля),мм2;
- l – длина линии, м;
Обновлено: 7 июл. 2020 г.
Допустим, что в цепи, показанной на рис. 3, протекает синусоидальный ток
Рис. Электрическая цепь с последовательным включением резистора, катушки
Напряжение на резисторе пропорционально току
Напряжение на катушке имеет амплитуду
(И 3. 10) и опережает ток по фазе на (И 3. 11):
Напряжение на конденсаторе имеет амплитуду
(И 3. 25) и отстает от тока по фазе (И 3. 26):
Напряжение источника определим по второму закону Кирхгофа
получил название реактивного сопротивления цепи с последовательным соединением катушки и конденсатора. В итоге, входное напряжение исследуемой цепи представим в виде
Эту формулу можно применить для любого линейного двухполюсника в цепи переменного синусоидального тока. Входное напряжение состоит из синусоидальной составляющей, имеющей ту же фазу, что и ток, и косинусоидальной составляющей, фаза которой отличается от фазы тока на.
И 3. 31
Определение 1. Составляющая напряжения, фаза которой равна фазе тока, называется активной составляющей. Составляющая напряжения, фаза которой больше или меньше фазы тока на , называется реактивной составляющей напряжения.
И 3. 32
Определение 2. Активная составляющая напряжения на двухполюснике пропорциональна его току; коэффициент пропорциональности называется эквивалентным активным сопротив-лением двухполюсника.
И 3. 33
Определение 3. Амплитуда реактивной составляющей напряжения на двухполюснике пропорциональна амплитуде тока; коэффициент пропорциональности называется эквивалентным реактивным сопротивлением двухполюсника.
В результате вывода формулы (3. 17) для двухполюсника, показанного на рис. 3, получилось, что его эквивалентное реактивное сопротивление равно разности индуктивного сопротивления катушки и емкостного сопротивления конденсатора, согласно формуле (3. 16). У других двухполюсников эквивалентное реактивное сопротивление может зависеть от сопротивлений всех входящих в них элементов, в том числе и резисторов. Реактивное сопротивление двухполюсника (добавление слова эквивалентное необязательно) является алгебраической величиной, в частности, реактивное сопротивление конденсатора равно его емкостному сопротивлению со знаком минус. Такой вывод следует из формулы (3. 16), если.
И 3. 34
Вывод. В отличие от цепей постоянного тока двухполюсники в цепях переменного синусоидального тока характеризуются не одним, а двумя сопротивлениями: активным и реактивным. Если известны активное и реактивное сопротивления двухполюсника и протекающий через него ток, то можно определить активную и реактивную составляющие напряжения и само напряжение, например, по формуле (3. 17).
При последовательном соединении приборов с активным и индуктивным сопротивлениями (рис. 1) полное сопротивление цепи нельзя находить арифметическим суммированием. Если обозначить полное сопротивление через z, то для его определения служит формула:
Как видно, полное сопротивление является геометрической суммой активного и реактивного сопротивлений. Так, например, если r = 30 Ом и XL = 40 Ом, то
z получилось меньше, чем r + XL = 30 + 40 = 70 Ом.
Например, если r = 1 Ом и xL = 10 Ом, то
Ошибка лишь 0,5 % вполне допустима, так как сами сопротивления r и х бывают известны с меньшей точностью.
При параллельном соединении ветвей, имеющих активные и реактивные сопротивления (рис. 2), расчет полного сопротивления удобнее делать с помощью активной проводимости
и реактивной проводимости
Полная проводимость цепи у равна геометрической сумме, активной и реактивной проводимостей:
А полное сопротивление цепи является величиной, обратной у,
Если выразить проводимость через сопротивления, то нетрудно получить следующую формулу:
Эта формула напоминает известную формулу
но только в знаменателе стоит не арифметическая, а геометрическая сумма сопротивлений ветвей.
Пример. Найти полное сопротивление, если параллельно соединены приборы, имеющие r = 30 Он и xL = 40 Ом.
При расчете z для параллельного соединения можно для упрощения пренебречь большим сопротивлением, если оно превосходит меньшее в 10 и более раз. Ошибка не будет превышать 0,5 %
Рис. Последовательное соединение участков цепи с активным и индуктивным сопротивлением
Рис. Параллельное соединение участков цепи с активным и индуктивным сопротивлением
Принцип геометрического сложения применяется для цепей переменного тока также в случаях, когда надо складывать активные и реактивные напряжения или токи. Для последовательной цепи по рис. 1 складываются напряжения:
При параллельном соединении (рис. 2) складываются токи:
Если же последовательно или параллельно соединены приборы, имеющие только одни активные или только одни индуктивные сопротивления, то сложение сопротивлений или проводимостей и соответствующих напряжений или токов, а также активных или реактивных мощностей производится арифметически.
При любой цепи переменного тока закон Ома можно писать в следующем виде:
где z — полное сопротивление, вычисляемое для каждого случая соединения так, как это было показано выше.
Коэффициент мощности cosφ для любой цепи равен отношению активной мощности Р к полной S. При последовательном соединении это отношение можно заменить отношением напряжений или сопротивлений:
При параллельном соединении получим:
Вывод основных расчетных формул для последовательной цепи переменного тока, имеющей активное и индуктивное сопротивления, можно сделать следующим образом.
Проще всего построить векторную диаграмму для последовательной цепи (рис.
Рис. Векторная диаграмма для последовательной цепи с активным и индуктивным сопротивлением
На этой диаграмме показаны вектор тока I, вектор напряжения UA на активном участке, совпадающий по направлению с вектором I, и вектор напряжения UL на индуктивном сопротивлении. Это напряжение опережает ток на 90° (напомним, что векторы надо считать вращающимися против часовой стрелки). Полное напряжение U представляет собой суммарный вектор, т. диагональ прямоугольника со сторонами UA и UL. Иначе говоря, U есть гипотенуза, а UA и UL — катеты прямоугольного треугольника. Отсюда следует, что
что напряжения на активном и реактивном участках складываются геометрически.
Разделив обе части равенства на I2, найдем формулу для сопротивлений:
Особенности активного сопротивления
Сопротивление в электротехнике является важнейшим параметром, с помощью которого какая-то часть электрической цепи оказывает противодействие проходящему по ней току. Образованию данной величины способствуют изменения электроэнергии и ее переход в другие виды энергетических состояний. Подобное явление характерно лишь для переменного тока, под действием которого образуются активные и реактивные сопротивления кабелей. Этот процесс представляет собой необратимые изменения энергии или передачу и распределение ее между отдельными элементами цепи. Если изменения электроэнергии принимают необратимый характер, то такое сопротивление будет активным, а если имеют место обменные процессы, оно становится реактивным. Например, электрическая плита выделяет тепло, которое обратно в электрическую энергию уже не превращается.
Данное явление в полной мере затрагивает любые виды провода и кабеля. При одинаковых условиях, они будут по-разному сопротивляться прохождению постоянного и переменного тока. Подобная ситуация возникает из-за неравномерного распределения переменного тока по сечению проводника, в результате чего образуется так называемый поверхностный эффект.
Таблица и расчет по формуле
Как показывает таблица, поверхностный эффект не критично влияет на проводники, состоящие из цветных металлов и работающие при переменном напряжении с частотой 50 Гц. Поэтому для выполнения расчетов, сопротивления таких кабелей под действием постоянного и переменного тока принимаются условно равными.
Кроме таблицы, для расчетов проводников из алюминия и меди используется специальная формула r = (l * 103)/ γ3 * S = r * l, в которой l – длина (км), γ – удельное значение проводимости конкретного материала (м/ом * мм2), r – активное сопротивление 1 км кабеля (Ом/км), S – поперечное сечение (мм2).
Активное сопротивление стальных проводов существенно превышает аналогичный показатель проводников из цветных металлов. Это связано с более низкой удельной проводимостью и наличием поверхностного эффекта, выраженного намного ярче по сравнению с медными и алюминиевыми проводами. Кроме того, в линиях со стальными проводами активная энергия значительно теряется на перемагничивание и вихревые токи, поэтому такие потери становятся дополнительным компонентом активного сопротивления.
У стальных проводников существует зависимость активного сопротивления от величины протекающего тока, поэтому в расчетах неприемлемо использование постоянного значения удельной проводимости.
Действие индуктивного сопротивления кабельных линий
Полное сопротивление электрической цепи разделяется на активное и индуктивное сопротивление. Из них последнее является составной частью реактивного сопротивления, возникающего во время прохождения переменного тока через элементы, относящиеся к реактивным. Индуктивность считается основной характеристикой катушек, не учитывая активное сопротивление их обмоток. Как правило, реактивное сопротивление возникает под влиянием ЭДС самоиндукции. При ее росте, в зависимости от частоты тока, происходит одновременное увеличение сопротивления.
Таким образом, активное и реактивное сопротивление кабелей образуют полное сопротивление, которое есть ни что иное, как сумма квадратов каждой составляющей. Графически это отображается в виде прямоугольного треугольника, в котором гипотенуза является полным сопротивлением, а катеты – его составными элементами.
Очень быстро вычислить активное и индуктивное сопротивление кабелей помогает таблица, в которой отражаются основные характеристики наиболее распространенных проводников. Однако довольно часто требуется определить индуктивное сопротивление Х кабельной линии с определенной протяженностью. Для этого применяется простая первоначальная формула Х = Хl, где Х является индуктивным сопротивлением 1 км проводника, а l – длина этого проводника. Полученный результат измеряется в единицах Ом/км.
В свою очередь Х определяется по другой формуле X = 0,145lg * (2Dср/d) + 0,0157 μт, в которой 2Dср является средним расстоянием между проводниками или центрами кабельных жил, d – диаметр этих проводников или жил, μт – отражает относительную магнитную проницаемость металла проводника. Таким образом, при увеличении сечения проводника реактивное сопротивление Х будет незначительно уменьшаться.
Электрическая цепь.
Источник электрического тока, соединенный проводами с различными электроприборами и потребителями электрической энергии, образует электрическую цепь.
Электрическую цепь принято изображать с помощью схем, в которых элементы электрической цепи (сопротивления, источники тока, включатели, лампы, приборы и т. ) обозначены специальными значками.
Направление тока в цепи — это направление от положительного полюса источника тока к отрицательному. Это правило было установлено в XIX в. и с тех пор соблюдается. Перемещение реальных зарядов может не совпадать с условным направлением тока. Так, в металлах носителями тока являются отрицательно заряженные электроны, и движутся они от отрицательного полюса к положительному, т. в обратном направлении. В электролитах реальное перемещение зарядов может совпадать или быть противоположным направлению тока, в зависимости от того, какие ионы являются носителями заряда — положительные или отрицательные.
Включение элементов в электрическую цепь может быть последовательным или параллельным.
Виды сопротивления
В электротехнике рассматривается активное электрическое сопротивление, а также две разновидности реактивного: индуктивное и ёмкостное.
Активное сопротивление Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.
Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.
Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.
Формула для расчета активного сопротивления соответствует закону Ома:
R = U / I, где
- R — величина активного сопротивления между двумя точками в цепи;
- U — напряжение или разность потенциалов между ними;
- I — сила тока на рассматриваемом участке цепи.
Для расчета активного сопротивления проводника формула будет другая:
- l — длина проводника,
- s — площадь поперечного сечения,
- p — “ро” удельное сопротивление.
Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).
Этот вид возникает тогда, когда переменный ток проходит сквозь элемент, который обладает индуктивностью или емкостью. Основной особенностью реактивного сопротивления является преобразование электрической энергии в другую форму в прямом и обратном направлениях. Часто это происходит циклически. Реактивное сопротивление проявляется только при изменениях силы тока и напряжения. Существует два его вида: индуктивное и емкостное.
При увеличении силы тока порождается магнитное поле, обладающее различными характеристиками. Наиболее важной из них является индуктивность. Магнитное поле, в свою очередь, воздействует на проводник, по которому протекает ток. Влияние является противоположным направлению изменения тока. То есть, если сила тока увеличилась, то магнитное поле будет уменьшать его, и наоборот, если снизилась, то поле усилит его. Когда ток не меняется, реактивное сопротивление катушки индуктивности будет равно нулю.
Индуктивное сопротивление зависит от частоты тока. Чем она выше, тем выше скорость изменения данного параметра. Это значит, что будет образовано более сильное магнитное поле. Возникающая при этом ЭДС препятствует изменению электрического тока.
Расчет реактивного индуктивного сопротивления осуществляется по такой формуле:
XL = L×w = L×2π×f, где буквами обозначаются:
- L — индуктивность магнитного поля, которое порождается изменением силы тока;
- W — круговая частота изменения, которая используется в описании синусоидального изменения силы тока;
- Π — число «пи»;
- f — частота тока в обычном смысле.
При синусоидальном изменении напряжения сила тока будет меняться, отставая от него по фазе. Поэтому реактивное сопротивление трансформатора существенно зависит от его индуктивности.
Оно имеет иную природу, чем индуктивное. Это понятие удобно проиллюстрировать на примере электрической цепи, состоящей из источника питания, клеммы которого соединены с обкладками конденсатора. Сразу после подключения на них будет постепенно накапливаться заряд, создавая ток в цепи.
После достижения предельной величины, которая определяется ёмкостью детали, ток не будет проходить по цепи. Если после этого отключить провода от клемм, а затем последние соединить, то между ними начнётся перемещение зарядов до тех пор, пока разность потенциалов станет равной нулю.
Если к конденсатору подключить источник переменного тока, то будет происходить следующее. С увеличением разности потенциалов заряд на обкладках конденсатора будет расти. Когда напряжение перейдёт в фазу уменьшения, накопленный заряд начнёт стекать с них, образуя ток противоположного направления. Затем разность потенциалов станет отрицательной, но по абсолютной величине будет расти до максимального значения. При этом конденсатор начнет вновь заряжаться, но при этом знак поступающих зарядов будет не такой, который был раньше.
Когда напряжение начнёт увеличиваться (уменьшаясь по абсолютной величине), заряд с обкладок конденсатора будет стекать. Когда разность потенциалов у источника достигнет нуля и продолжит увеличиваться, начнётся новый цикл изменений.
На каждом этапе описанной ситуации ток с обкладок конденсатора будет иметь направление противоположное тому, которое порождается переменной разностью потенциалов источника питания.
Происходящее таким образом уменьшение силы тока представляет собой физический смысл ёмкостного сопротивления. Оно обозначается буквами ХС и рассчитывается по формуле:
XС = 1/(w×C) = 1/(2π×f×C), где
- C — ёмкость используемого конденсатора;
- w — круговая частота переменного тока;
- π — число «пи»;
- f — частота переменного тока.
В рассматриваемом случае изменения тока отстают от напряжения.
Полное сопротивление
При использовании нескольких разновидностей важно знать, как они сочетаются между собой. Активное сопротивление присутствует в любых схемах. Оно способствует превращению части электрической энергии в нагрев. Реактивное сопротивление возникает лишь в цепи переменного тока. Чтобы определить его величину, необходимо из индуктивного вычесть ёмкостное. Эта характеристика показывает энергию, которая пульсирует в цепи, переходя из одной формы в другую.
Полное сопротивление представляет собой сумму активного и реактивного сопротивления в цепи переменного тока, но такое сложение необходимо выполнять особым образом. Для этого нужно начертить прямоугольный треугольник, катеты в котором должны иметь длину, равную величине активного и реактивного сопротивлений соответственно.
Длина гипотенузы будет численно выражать полное сопротивление электрической цепи. Для его определения используется правило, говорящее о том, что сумма квадратов катетов равна квадрату гипотенузы. Это правило называют теоремой Пифагора. Следовательно, формула, с помощью которой можно найти полное сопротивление, выглядит так:
Z = √(R^2+〖(XL-XC)〗^2 ), где
- Z — полное сопротивление;
- R — величина активной составляющей;
- XL и XC — значение индуктивного и емкостного параметра соответственно.
Следовательно, при расчёте полного сопротивления или импеданса нужно учитывать, что такое ёмкость и индуктивность и как они могут проявляться в электрических схемах. Эти величины называются еще паразитными, так как они могут отрицательно влиять на работу электроприбора. Их возникновение относят к непредсказуемым факторам. При этом емкостным или индуктивным сопротивлением, имеющим небольшое значение, при выполнении расчетов можно пренебречь.
Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.
В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.
Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) – схема цепи; б) – сдвиг фаз тока и напряжения; в) – треугольник напряжений; д) – треугольник сопротивлений.
Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис. 2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.
Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.
По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.
Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z2) будет также равен сумме квадратов активного и индуктивного сопротивлений, т.
Извлекая квадратный корень из обеих частей этого равенства, получим,
Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений
Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.
Полное сопротивление цепи, изображенной на рис. 2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.
В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.
Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) – схема цепи; б) – треугольник сопротивлений.
Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.
Для данного случая:
В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.
Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) – схема цепи; б) – треугольник сопротивлений.
Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т.
Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).
После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т.
Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.
Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.
Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.
Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.
Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) – параллельное соединение R и L; б) – параллельное соединение R и C.
Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z
Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т.
Приводя к общему знаменателю подкоренное выражение, получим:
Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис.
Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.
Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С будет равно:
Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.
В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).
Рисунок 6. Эквивалентная схема колебательного контура.
Формула полного сопротивления для этого случая будет:
Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:
В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. чтобы соблюдалось условие
При соблюдении этого условия полное сопротивление колебательного контура будет равно:
где L—индуктивность катушки в Гн;
С—емкость конденсатора в Ф;
R—активное сопротивление катушки в Ом.
Закон Ома для полной цепи.
Рассмотрим электрическую цепь, состоящую из источника тока и резистора R.
Закон Ома для полной цепи устанавливает связь между силой тока в цепи, ЭДС и полным сопротивлением цепи, состоящим из внешнего сопротивления R и внутреннего сопротивления источника тока r.
Работа сторонних сил Aст источника тока, согласно определению ЭДС (ɛ) равна Aст = ɛq, где q — заряд, перемещенный ЭДС. Согласно определению тока q = It, где t — время, в течение которого переносился заряд. Отсюда имеем:
Aст =ɛIt.
Тепло, выделяемое при совершении работы в цепи, согласно закону Джоуля — Ленца, равно:
Q = I2Rt + I2rt.
Согласно закону сохранения энергии А = Q. Приравнивая (Aст =ɛIt) и (Q = I2Rt + I2rt), получим:
ɛ = IR + Ir.
Закон Ома для замкнутой цепи обычно записывается в виде:
Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Если цепь содержит несколько последовательно соединенных источников с ЭДС ɛ1, ɛ2, ɛ3 и т. , то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных источников. Знак ЭДС источника определяется по отношению к направлению обхода контура, который выбирается произвольно, например, на рисунке ниже — против часовой стрелки.
Сторонние силы внутри источника совершают при этом положительную работу. И наоборот, для цепи справедливо следующее уравнение:
В соответствии с сила тока положительна при положительной ЭДС — направление тока во внешней цепи совпадает с направлением обхода контура. Полное сопротивление цепи с несколькими источниками равно сумме внешнего и внутренних сопротивлений всех источников ЭДС, например, для рисунка выше:
Rn = R + r1 + r2 + r3.
Как измерить полное электрическое сопротивление
Соединим все детали вместе в простую электрическую цепь. Взглянем на рисунок ниже: это цепь с источником питания постоянного тока. Ток течет через резистор. Весьма просто, верно? Чем больше сопротивление резистора в цепи, тем меньше будет ток.
Простая цепь постоянного тока с резистором
на 100 Ом для ограничения силы токаЧто произойдет, если мы добавим в электрическую цепь источник питания переменного тока, катушку индуктивности и конденсатор? Теперь в цепи есть два дополнительных компонента, каждый из которых по своему оказывает сопротивление электрическому току. Как и резистор, они оба препятствуют прохождению электрического тока, при этом также воздействуют на ток. Если суммировать активное сопротивление резистора и активное и реактивное сопротивления конденсатора и катушки индуктивности, то получится полное электрическое сопротивление или импеданс.
В цепи переменного тока последовательно соединены резистор, катушка индуктивности и конденсатора
Постойте! Чтобы рассчитать полное электрическое сопротивления недостаточно просто сложить активные и реактивные сопротивления. Обычно в большинстве учебных пособий с этого момента начинается изобилие математических формул, поэтому дальше читайте не спеша.
Практическое применение полного электрического сопротивления
Становится понятно, в конце концов, что после всех наших объяснений разобраться, что такое полное электрическое сопротивление, несложно, не так ли? Существуют десятки бесплатных калькуляторов , которые помогут вам выполнить расчеты. Что вам на самом деле нужно – это знать, что полное сопротивление работает так же, как активное сопротивление, ограничивая ток в цепи переменного тока.
Способность таких компонентов, как конденсаторы и катушки индуктивности реагировать на постоянные изменения переменного тока, делает их уникальными. Благодаря полному сопротивлению в вашей цепи можно организовать нечто похожее на электрический щит с защитными автоматами, которые реагируют на неожиданные скачки электричества, защищая от выгорания домашнюю электропроводку. Можно также сказать спасибо полному сопротивлению за то, что вы можете носить с собой ноутбук с полностью заряженным аккумулятором, не опасаясь его взрыва.
Когда дело доходит до работы с устройствами с питанием от источника переменного тока, будь то ноутбук или электрощит в вашем доме, стоит быть благодарным полному электрическому сопротивлению. И помните, полное электрическое сопротивление – это просто старший брат привычного активного сопротивления, который объединяет активное и реактивное сопротивления в одной простой формуле.
Расчет полного электрического сопротивления конденсатора
Чтобы найти полное электрическое сопротивление конденсатора, вы можете воспользоваться следующей формулой. В ней Xc – полное электрическое сопротивление, которое необходимо найти. Оно измеряется в Омах. Переменная f – это частота сигнала, проходящего через конденсатор, а C – емкость конденсатора.
Расчёт индуктивного сопротивления катушки
Любая индуктивность, в т. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.
Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:
- u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
- ur – относительная проницаемость сердечника;
- N – количество витков дросселя;
- S – его поперечное сечение в м2;
- l – длина катушки в метрах.
Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.
Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.